B.Math.Hons. Ist year Ist Midsemestral exam 2005

Algebra I : Instructor - B.Sury

Answer eight questions including the first. Be brief.

1. State (don't prove) whether the following are true or false.

(i) The elements xy and yx are conjugate for all $x, y \in G$.

(ii) If elements a, b of finite order in a group commute, then O(ab) = O(a)O(b).

(iii) It is possible for a group to be isomorphic to a proper subgroup.

(iv) A finite group in which each element has order a power of a fixed prime p, must itself have order a power of p.

(v) A finite group in which every element is a product of elements of order 2, must have order a power of 2.

- 2. Prove that, if $G = \langle g \rangle$ is a cyclic group of order n, then every subgroup must be of the form $\langle g^d \rangle$ for some divisor d of n. Use this to deduce that $n = \sum_{d|n} \phi(d)$.
- 3. (i) In any group G, prove that O(xy) = O(yx) for all x, y ∈ G.
 (ii) If G is a group in which x² = e for all x, prove that G must be abelian.
- 4. If H is a subgroup of a group G such that every left coset of H is a right coset of H, then show that H must be normal.
- 5. (i) If σ₁,...,σ_r ∈ S_n are disjoint cycles of lengths n₁,...,n_r, then prove that the order of σ₁...σ_r is the LCM (least common multiple) of n₁,...,n_r.
 (ii) If σ, τ ∈ S_n are r-cycles for some r, prove that they are conjugate

(ii) If $\sigma, \tau \in S_n$ are r-cycles for some r, prove that they are conjugat in S_n .

- 6. (i) If a finite group G acts on a finite set S, show that each orbit has cardinality a divisor of O(G).
 (ii) Let G be a finite group of order pⁿ for some prime p acting on a finite set S whose cardinality is not a multiple of p. Using (i) or otherwise, show that G fixes some point of S.
- 7. Let G be a group such that the quotient group G/Z(G) is cyclic. Prove that G must be abelian.
- 8. If H, K are subgroups of finite indices of a group G, then prove that $H \cap K$ must have finite index $\leq [G:H][G:K]$.
- 9. Find the center of the group $SL_n(\mathbf{C}) = \{g \in GL_n(\mathbf{C}) : det \ g = 1\}.$
- 10. Consider the action of \mathbf{Z}_n^* on \mathbf{Z}_n by : $(a, b) \mapsto ab$. Show that the number of orbits is the number d(n) of divisors of n.
- 11. Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a matrix with integer entries. Consider the homomorphism θ from $\mathbf{Z} \times \mathbf{Z}$ to itself given by $(x, y) \mapsto (ax + by, cx + dy)$. Prove that, if the subgroup Im (θ) has finite index in $\mathbf{Z} \times \mathbf{Z}$, then $ad bc \neq 0$.